The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus.

نویسندگان

  • Jun Yan
  • Xuefei Cai
  • Jianghong Luo
  • Shusei Sato
  • Qunyi Jiang
  • Jun Yang
  • Xiangling Cao
  • Xiaohe Hu
  • Satoshi Tabata
  • Peter M Gresshoff
  • Da Luo
چکیده

The endogenous trans-acting small interfering RNA (ta-siRNA) pathway plays a conserved role in adaxial-abaxial patterning of lateral organs in simple-leafed plant species. However, its function in compound-leafed species is largely unknown. Using the compound-leafed species Lotus japonicus, we identified and characterized two independent mutants, reduced leaflet1 (rel1) and rel3, whose most conspicuous defects in compound leaves are abaxialized leaflets and reduction in leaflet number. Concurrent mutations in REL genes also compromise flower development and result in radial symmetric floral organs. Positional cloning revealed that REL1 and REL3 encode the homologs of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR OF GENE SILENCING3 and ARGONAUTE7/ZIPPY, respectively, which are key components of the ta-siRNA pathway. These observations, together with the expression and functional data, demonstrated that the ta-siRNA pathway plays conserved yet distinct roles in the control of compound leaf and flower development in L. japonicus. Moreover, the phenotypic alterations of lateral organs in ta-siRNA-deficient mutants and the regulation of downstream targets by the ta-siRNA pathway in L. japonicus were similar to those in the monocots but different from Arabidopsis, indicating many parallels between L. japonicus and the monocots in the control of lateral organ development by the ta-siRNA pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway

Plants leaves develop proximodistal, dorsoventral (adaxial-abaxial), and mediolateral patterns following initiation. The Myb domain gene PHANTASTICA (PHAN) is required for adaxial fate in many plants , but the Arabidopsis ortholog ASYMMETRIC LEAVES1 (AS1) has milder effects, suggesting that alternate or redundant pathways exist . We describe enhancers of as1 with more elongate and dissected lea...

متن کامل

MicroRNA miR396 and RDR6 synergistically regulate leaf development

The microRNA (miRNA) miR396 regulates GROWTH-REGULATING FACTORs (GRFs), a plant specific family of transcription factors. Overexpression of miR396 causes a decrease in the GRFs that has been shown to affect cell proliferation in the meristem and developing leaves. To bring further insights into the function of the miR396 regulatory network we performed a mutant enhancer screen of a stable Arabi...

متن کامل

Two small regulatory RNAs establish opposing fates of a developmental axis.

Small RNAs are important regulators of gene expression. In maize, adaxial/abaxial (dorsoventral) leaf polarity is established by an abaxial gradient of microRNA166 (miR166), which spatially restricts the expression domain of class III homeodomain leucine zipper (HD-ZIPIII) transcription factors that specify adaxial/upper fate. Here, we show that leafbladeless1 encodes a key component in the tra...

متن کامل

Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome.

Interfering with small RNA production is a common strategy of plant viruses. A unique class of small RNAs that require microRNA and short interfering (siRNA) biogenesis for their production is termed trans-acting short interfering RNAs (ta-siRNAs). Tomato (Solanum lycopersicum) wiry mutants represent a class of phenotype that mimics viral infection symptoms, including shoestring leaves that lac...

متن کامل

The exosome and trans-acting small interfering RNAs regulate cuticular wax biosynthesis during Arabidopsis inflorescence stem development.

The primary aerial surfaces of land plants are covered with a cuticle, a protective layer composed of the cutin polyester matrix and cuticular waxes. Previously, we discovered a unique mechanism of regulating cuticular wax biosynthesis during Arabidopsis (Arabidopsis thaliana) stem elongation that involves ECERIFERUM7 (CER7), a core subunit of the exosome. Because loss-of-function mutations in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 152 2  شماره 

صفحات  -

تاریخ انتشار 2010